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Abstract

A new method is given for preventing the simplex method from cycling.
Key features are that a positive step is taken at every iteration, and nonbasic

va:ibles are allowed to be slightly infeasible. There is no additional work per
iteration. Computational results are given for the first 53 test problems in
nelfhb, indicating reliable performance in all ca.ses.

The method may be applied to active-set methods for solving nonlinear
programs with linear constraints. J- > r-',"",-: ( :'..- ,," - * -' .'. - - ."'/ ' -... Ir ," J ''" '"

Keywords: Linear progiamming, simplex method, degeneracy, cy-fing) (J (

1. Introduction

Degeneracy is often regarded as a discomforting but otherwise tolerable hindrance
to the simplex method, and to other active-set algcrithms for solving optimization
problems involving linear constraints. Sequences of non-improving steps are known
to occur (perhaps many times during a run), but such sequences are rarely observed
to be infinite. The phenomenon of "stalling" is therefore recognized and accepted,
but "cycling" is deemed very unlikely to occur.

In spite of such folklore, a rigorous anti-cycling procedure can provide welcome
peace of mind to users and implementors alike, particularly if the cost is small.
Such a procedure was given by Wolfe [Wo163], and the possible benefits have been
demonstrated recently by Ryan and Osborne [R0861. (See also Falkner and Ryan
(FR87].) Our aim here is to present an alternative anti-cycling procedure that, like
Wolfe's method, involves little overhead and has proved to be effective in practice.
We also investigate the relationship with Wolfe's method.

*The material contained in this report is based upon research supported by the Air Force Office
of Scientific Research Grant 87-01962; the U.S. Department of Energy Grant DE-FG03-87ER25030; S

National Science Foundation Grants CCR-8413211 and ECS-8715153; and the Office of Naval Re-
search Contract N00014-87-K-0142.



2 An anti-cycling procedure

1.1. The standard LP problem

Most of our discussion will be in terms of the simplex method [Dan63] and the
primal linear programming problem

minimize cTX (1)
subject to Ax = b, l < x < u,

where A E Rxn (m < n). 1 Let Ax - Bx8 + NXN denote the partitioning of A
and x into basic and nonbasic variables, where B E Wmxm is the usual basis matrix.

In typical -np!cmc tat tc.s -rth- simplex method, the general c=nztr'r, tz .4- b
are satisfied throughout and infeasibility occurs only with respect to the bounds.
For most iterations, factors of the current B are obtained by updating, but at the
beginning of a run and periodically thereafter, B is factorized directly and the basic
variables are recomputed to satisfy BXB + NXN = b. If the newly computed xB does
not satisfy its upper and lower bounds to within some feasibility tolerance 6 > 0,
Phase 1 of the simplex method is invoked to move the infeasible variables towards
their violated bounds. Phase 2 starts (or resumes) when the feasibility tolerance is
satisfied.

A similar optimality tolerance is used to judge whether any reduced costs are
sufficiently positive or negative to give an improved solution. Note that the feasibil-
ity and optimality tolerances are typically of order 10- 6, which is much larger than
a typical machine precision e (; 10-16).

In practice this means that "optimal" solutions are in reality feasible and near-

optimal solutions to the perturbed problem

minimize cTX

subject to Ax = b, lB - e <xB <UB + 6e, (2)

IN <XN <UN,

where e is a vector of ones, and B and N relate to the final basis obtained.
For the anti-cycling procedure developed here, we find it convenient to allow

nonbasic variables to be infeasible in a similar way. Thus, 'n place of (1) and (2),
we aim to find a feasible and near-optimal solution to the perturbed problem

minimize cTx

subject to Ax = b, l - be < ±u. + e. (3)

Since the final B-N partition is somewhat unpredictable, we anticipate that prac-
titioners accustomed to (2) will find problem (3) essentially equivalent. In practice,
few (if any) nonbasic variables will terminate infeasible.

In terms of conventional error analysis, the constraints of (3) can always be
satisfied numerically, as long as 6 is sufficiently large compared to machine precision.

'Implicitly, A and x are of the form A -( I). x = (i s), where ais a set of slack variables
with appropriate bounds in I and u. However, we never need to distinguish between f and s.
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(This is true even if (1) has no feasible solution.) Note however that we don't

rigorously "use up" all the freedom allowed by b to optimize the objective function;
i.e., if a solution appears to be optimal we don't try to improve the objective at the

expense of making additional variables slightly infeasible. Instead, we are content

to terminate knowing that some basic or nonbasic variables may lie up to 6 outside

their true bounds.

1.2. Key aspects

Two main features are involved in the new anti-cycling procedure:

" The feasibility tolerance 6 is increased slightly at the start of every iteration.

" Numerical values are stored for all components of x.

The first feature allows a positive step to be taken at every iteration. The second
allows slight infeasibilities to be recorded correctly when basic variables become
nonbasic. We shall speak of the "EXPAND" procedure 2 when referring to this
particular refinement of the simplex method.

The EXPAND procedure is a practical row-selection method, in the sense that
it chooses a pivot row in the simplex method. We are able to retain the "maximum
pivot" property of the row-selection method due to Harris [Har73I. In addition,
we are able to remove an unforeseen weakness in previous implementations of the

Harris procedure.

1.3. Other anti-cycling methods

Wolfe's method [Wo163] and the lexicographic rule [DOW55,Dan63] are both row-
selection procedures. As with the EXPAND procedure, these methods can be used
with any column-selection ("pricing") strategy. In particular, they allow "partial
pricing"-an important advantage when n > m.

Recently, a new column-selection method has been given by Dantzig [Dan88] and
further developed by Klotz [Klo88]. It may be used with any row-selection method.
An additional "pricing" vector is required and the method is not directly amenable to
partial pricing. However, it appears to be promising for highly degenerate problems.

The first anti-cycling method of Bland [Bla77] prescribes both the pivot column
and the pivot row, so again does not allow partial pricing.

In contrast, Benichou et al. IBGHR77] perturb the vector b and then apply a
"normal" simplex procedure. If the perturbation is chosen randomly, the probability
of cycling is zero. The EXPAND procedure is somewhat akin to this approach,
particularly when the perturbation is removed (Section 4.4). However, we do not
rely on random numbers, and we recommend a considerably smaller perturbation
than the O(10 - ') referred to in [BGIIR77].

The primal-dual methods of Balinski and Gomory [BG63], Graves (Gra65] and
Fletcher (Fle85] involve a nested sequence of subproblems similar to those arising in
Wolfe's method.

2 EXPanding-tolerance ANti-Degeneracy procedure

"PW



4 An anti-cycling procedure

2. Nonbasic Solutions

Historically, the simplex method has been implemented in such a way that numerical
values are recorded for the basic variables only. The value of each nonbasic variable
is typically implied (by a status indicator) to be the variable's lower or upper bound.
Often the bounds are implicitly zero and infinity (0 < xi !_ oo for all j) and nonbasic
variables are implicitly zero.

In more general implementations, some or all variables xj are allowed to have
arbitrary bounds lj and u3 , and the value of a noitbasic variable is normally defined
to be one of the bounds; thus, xj = lj or ui according to a status indicator. A
complication arises with "free variables" (satisfying -oo < xj < +oo), since provi-
sion must be made for them to be nonbasic even though they are likely to be basic S

at a solution. Typically, a nonbasic free variable is defined to have the value _c",
thereby avoiding the need to store any oter value. (This approach was used in
various versions of MINOS up to and including MINOS 5.0 [MS83].)

History aside, many implementors have recognized that certain benefits arise
if an arbitrary value can be stored for each and every variable. For example, in
mathematical programming systems such as MPSX/370 and MPS III, the BASIC
procedure is desigr,ed to input numerical values for any number of variables and
produce from them a basic solution. Further examples are the "pseudo-constraints"
of Fletcher and Jackson [FJ74], the "temporary constraints" of Gill and Murray
[GM78], and the "pegged variables" of Nazareth [Naz86,Naz87]. The essential idea
is that nonbasic variables can be temporarily frozen at specified values. 5

Thus in linear and nonlinear programming, while the term nonbasic is often
taken to mean "equal to zero" or "equal to an upper or lower bound", it is more
useful to define a nonbasic variable as one that is currently fixed at a specified value.
The working-set strategy involved will eventually allow such a variable to move as
if it were being released from a normal bound.

This definition was adopted in MINOS 5.1 [MS87]. Explicit values are stored for
all variables, and at each iteration of the simplex and reduced-gradient algorithms,
nonbasic variables are allowed to take any strictly feasible value:

lj , xj < uj. (4) ,

An advantage during cold starts is that variables can be initialized at the "safe"
value of zero in cases where a user has specified deceptively large bounds, such as
1I = -108, uj = +108. (There is no need to initialize xj at one of its bounds.)
Similar advantages arise when restarting modified problems and recovering from
singular bases.

For the anti-cycling procedure of this paper, we have generalized (4) by allowing
nonbasic variables to be slightly outside their bounds:

< XJ uj +(5)

where 6 is the feasibility tolerance mentioned earlier. This also eliminates a difficulty S
with the Harris-type steplength procedure, as we now describe.

'V..



3. Steplength Procedures 5

3. Steplength Procedures

In general, optimization algorithms proceed by generating a search direction p and
then changing the variables according to x 4- x + ap for some steplength a (a > 0).

In the primal simplex method, x always satisfies the constraints Ax = b. The
"pricing" or "column-selection" strategy chooses a nonbasic variable to be moved
from its current value. (This variable usually enters the basis.) A search direction
p is then determined, such that A(a' + ap) = b for any step a.

The subsequent steplength computation is known as the "ratio test" or the "row-
selection" procedure. The aim is to find which variable is the first to encounter a
bound. (This variable usually leaves the basis.)

3.1. The standard ratio test

A "textbook" ratio test assumes that the current point x is feasible (I < x < u) and
finds the largest step a that keeps the new point feasible: I <_ x + ap < u. Some
blocking variable x, reaches one of its bounds exactly, so that x. + apr = 14 or ur_
depending on the sign of p,. For each j, let ai be the step that takes aj to one of
its bounds:itsbonds [(1j - --j)lpj pj < 0,

aj (u - j)/p pj > 0, (6)
oo otherwise.

Further, let a, = min1 aj. The maximum feasible step is then a = a, >_ 0, and the
blocking variable is x,.

Given x, p, I and u, we see that the ratio test determines a steplength a and an
index r. We shall refer to this procedure by writing

(a,r) = ratio-test(z,p,1, u).

A danger with the textbook ratio test is that the pivot element p, could be
very small if X is close to its bound. (If Pr/11Pp is small, the next basis matrix
will be ill-conditioned.) To provide a nominal safeguard, we define a "cut-off" value .

below which small elements pj are treated as zero in (6). (In MINOS, "small" means
IPJ 1-- tolp where tolp = E2/3 for linear programs and E2/311p1 for nonlinear programs, S
with 2/3 - 10-11. Some implications are discussed in Section 5.1.)

3.2. The Harris ratio test

In [11ar731, Harris observed that some freedom in choosing r can often be introduced
by using a two-pass procedure. The first pass determines a perturbed steplength a I
that is slightly too large to keep x feasible: 10

(al,rl) = ratio-test(x,p,1 - be, u + be),

where 6 is the usual feasibility tolerance (; 10-'). It is important to note that x is
assumed to satisfy the perturbed bounds (1- e, u + be). 3 It follows that al > 0. 0

31n Phase 1 of the simplex method, some components of I and u are altered to :±:oo (perhaps
implicitly) to make this true; see Section 7.

~ -q ~ *~ ~ o ]



6 An anti-cycling procedure

Sd d

b

/a

Figure 1: Paths followed with standard (a-b- c-d) and Harris (a-f-d) ratio tests.

The second pass then considers all unperturbed steps aj (6) no larger than a1,
choosing the index associated with the largest pivot:

1Pr- = maxpj such that a3  c a1.
3

We define the corresponding steplength to be a2 = a,. The step a = a2 is then
acceptable as long as it is positive. In general, we define a = max{a2,0}.

3.3. An example with a2 positive

Let (1,u) = (0,oo) and suppose the current feasible solution is x = (0.0009, 1)T.

The Harris ratio test with 6 = 10 - 3 would then lead to a step x +- x + ap of the

form

( 0.0001) (0.0009 ) ( )0 - 1 + a -100 "

The steplength is positive (a = a2 = 0.01, r = 2). This is slightly too large to keep
z feasible, but the larger pivot is successfully chosen.

Figure 1 illustrates a similar case. The standard ratio test would lead to the path
(a-b-c-d); the solution would stay strictly feasible, but the constraint encountered
at b corresponds to a rather small pivot element. By allowing this constraint to be
slightly violated, the Harris ratio test would choose a less oblique constraint to be
encountered at f, giving the shorter and numerically more reliable path (a-f-d).
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3.4. An unexpected error

Note that a2 will be negative if the blocking variable lies slightly outside its bound
and p is leading it further from the same bound. (For example, x, above is now
-0.0001 and p, could be negative at the next iteration.)

The natural inclination is to set a == 0 and interpret this as a zero or "degen-
erate" step. Note however that the blocking variable becomes nonbasic. In most
implementations of the simplex method, this means that the blocking variable is
actually changed (perhaps implicitly) to lie exactly on its bound.

In effect, if the blocking variable is slightly infeasible (say lr - 6 < x, < lr), then
most implementations of the Harris procedure change the variables according to

x -- x + aer, (7)

where Jal < b. Such a change produces an unintentional error in satisfying Ax = b.
The error may be of order 6, which is typically much larger than c.

In practice, errors of this kind tend to be eliminated each time the basis is
refactorized, since the basic variables are typically recomputed in order to satisfy
Ax = b accurately.4 Provision is made to return to Phase 1 if the recomputed
variables lie outside their bounds by more than b. On well-behaved problems, few
iterations (if any) are required to rcgain feasibility, but in runs lasting thousands
of iterations, the risk of a few extra iterations every 50 (a typical factorization
frequency) amounts to a nontrivial overhead. In the worst case, "few" can be more
than 50 and an optimum may not be achieved.

For nonlinear problems, the perturbation to x in (7) can cause a discontinuity
in the nonlinear functions and may lead to a failure in the linesearch procedure.

3.5. A simple cure

To avoid this difficulty with the Harris ratio test, it would be sufficient to implement
a "zero" step literally. If a blocking variable is slightly infeasible, we should make

it nonbasic and retain its infeasible value rather than moving it onto its bound. The
variable should be temporarily frozen at that value (across basis factorizations if
necessary,) until the normal pricing strategy allows it to move. Provision should still
be made to revert to Phase 1 after refactorizatioa, but gI v taH! hiis-handling
package, the likelihood of losing feasibility will be greatly reduced.

An alternative is to allow a negative step whenever a2 < 0, giving the blocking
variable a chance to move exactly onto its bound. This approach has been used in
the quadratic programming and linear least-squares codes QPSOL 3.2 and LSSOL
1.0 [GMSW84,GLM*86. However, it is then necessary to perform a ratio test on
the reverse search direction -p, obtaining a possibly different blocking variable that
again may be unable to reach its bound exactly. Since the objective value will move
slightly in the wrong direction, there is also the possibility of cycling.

We propose a further alternative next.

4Solve BXB = b - NZN, or preferably solve By = b - Ax and update zx - xt + y.
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4. An Anti-cycling Procedure

One way to prevent cycling of the classical kind is to ensure that zero or negative
steps never occur. In the proposed procedure we insist that a > 0, so that the
objective function always improves.

Given a feasibility tolerance 6, suppose as before that the current x is feasible
to within that tolerance:

l-6e < x < u + be. (8)

Now suppose that 6 is changed to a slightly larger tolerance 6 as follows:

S=6+-, where 0<r<6. (9)

Since 6 > b, we have
l- 6e < x < u+ be, (10)

and it is clearly possible to take a positive step in any direction p before encountering
a perturbed bound. To find an acceptable positive step, we apply the Harris ratio
test in the normal way. If the resulting step a2 is negative or too small, we replace
it by a certain step arn as follows.

EXPAND procedure:

1. (First pass) Define a "largest allowable step" al using the increased feasibility
tolerance S:

(al, rl) = ratio-test (x, p, l - 4e, u + be).

2. (Second pass) Find the step a2 and index r associated with the largest allow-
able pivot:

a2 = a, where Jpr = max JPjJ such that a7 < al.

(The quantities aj are defined by equation (6).)

3. Define a "smallest allowable step" amin = r/1pJ.

4. If a2.> an,, set a = a2. (When x changes to x + ap, this step allows the
blocking variable x, to reach its boui~d e'xactly.)

5. Otherwise, set a = arin (In this case, the new value of x, will "overshoot"
its bound, but its infeasibility will be no greater than 6.)

The first pass gives a positive step al, and from (8)-(10) it is clear that

al> r/pr i .

Since the second pass maximizes the pivot element, we then have

0 < i - /p < "pr < t,-,

,V
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2:,d it follows that a," is both positive and not too large. It is preferable to take 0

tne step a2 whenever possible (to allow x, to reach its bound), but if a2 is negative
or too small, the step amln is acceptable.

To summarize, we define a = max{a2,a j,} and i = x + ap. We have shown
that a positive step is taken (amin < a < al) and that the new point satisfies the

required bounds:
4-e < ;f < U-+-4. (1

Since (11) is analogous to (8), the process can be repeated once the feasibility
tolerance is (again) increased as in (9).

4.1. Infeasible nonbasic values -

Let A be the distance between the blocking variable and the corresponding bound:

A Ixr - 1,1 or Ix, - Urn.

When A > r, the preferred step a = a2 is taken and the blocking variable
reaches its bound exactly. This is the normal "nondegenerate" case.

If A < r, the step a = cemi is taken and the blocking variable moves a total
distance of r and terminates infeasible. The final value of : must be recorded when
the blocking variable is made nonbasic.

Figure 2 illustrates a normal step and two examples of a degenerate step. We
assume the blocking variable xr is being constrained by its lower bound (so Pr < 0).
The sloping lines plot the value of x. + ap, against a, with three possible starting
values for xr. The lower bound is at the horizontal a axis. A,

In the top case, x, is relatively large initially and reaches its bound after a
reasonably large step. We take the normal Harris step a = a2 > amin.

In the middle case, Xr starts out feasible but reaches its bound after a very small
step. We insist on taking a larger step a = and the variable becomes slightly
infeasible. We count this as a "degenerate" step, even though a positive move is
made.

In the third case, xr is already infeasible and becomes even more infeasible.
However, after a step a = amin it still satisfies the required bound x, >_ I - 6.
Again we count this as a degenerate step. 0

The interpretation of "a degenerate step" is that "a slight infeasibility has just
been created among the nonbasic variables. The objective function has improved
in compensation". Since it is common for blocking variables to reenter the basis
at some later iteration, the total number of nonbasic infeasibilities at any stage is
generally less than the number of degenerate steps so far. S

4.2. Typical parameter values

The preceding sectio-s have discussed the steplength computation for one iteration
of the simplex nrethod. Various parameters are involved in a complete implementa- S
tion, as listed below. We indicate specific values that might be used in practice on
a machine with about 16 digits of precision.
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Xr + aPr

Cf~ a2

tt

Figure 2: Three possible starting values for the blocking variable X.r

6 = 10-6 is the "main" feasibility tolerance.

6o = 0.56 is the feasibility tolerance used at the start of a cycle of iterations.

6 K = 0.996 is the feasibility tolerance reached at the end of a cycle of iterations.

K = 10000 is the number of iterations in a cycle.

(6K - 6o)/K ;.- -10 is the amount by which the feasibility tolerance is
incremented each iteration.

6k = 
6 -k_ + r is the feasibility tolerance used at the k-th iteration of a cycle (k = 1
to K).

In the present implementation, the "main" tolerance 6 may be set by default or
specified by the user. Note that bo and bK are both similar to 6. The aim is to
keep the "current" feasibility tolerance bk much the same as the one intended by the
user, but to increase it steadily from 6o to bK over a rather long cycle of consecutive
iterations.
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Id~e

b

B-.....'.
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Figure 3: Expansion of feasible region as bk increases from 60 to bK*

4.3. Illustration

Figure 3 depicts a feasible region that expands between the two dashed lines as 6
increases from bo to bK (K = 5). The first feasible point is at vertex a, and the step
towards vertex b will not go beyond the first dotted boundary.

If the feasibility tolerance were zero, the simplex. method wvould follow the path

I...,.'.

(a-b--c-d-e-f). With a positive tolerance, the step (c-d) would be lengthened and
a slight infeasibility would arise temporarily, as illustrated in Figure 1. Vertices b,
c and f would be reached exactly.

The path indicated by arrows might be taken if the feasible region were defined
by certain additional hyperplanes (not shown). These hyperplanes would be in
higher dimensions and would have to cause near-degeneracy at each of the expanded
vertices corresponding to b, c, d and e. The main idea is that, even if an iterate lies
on or close to a degenerate vertex of the current feasible region (i.e., close to one
of the dotted lines), a forward move will always be possible within the next feasible
region (defined by the next dotted line).

4.4. A resetting procedure

At certain stages we require a "resetting procedure" to remove nonbasic infeasibili-
ties. The main steps are as folows.

1. The values Of nonbasic variables are scanned. Any that lie within 6 of a bound n
are moved exactly onto the bound. (This will include variables that were

IiW " ( d* :: ' v V \ ':q ~ i '- "-"-



12 An anti-cycling procedure

slightly infeasible when they were last removed from the basis.) A count is
kept of the number of nontrivial adjustments made-say, those greater than
10-10.

2. If the count is positive, the basic variables are recomputed from the remaining
variables, thereby satisfying Ax = b to (essentially) machine precision.

3. The current feasibility tolerance is reinitialized to o.

If a problem requiles more than K iterations, we invoke the resetting procedure
and continue with a new cycle of K iterations. (The decision to resume in Phase 1
or Phase 2 is based on i.)

We also invoke the resetting procedure when the optimizer reaches an apparently
optimal, infeasible or unbounded solution, unless this situation has already occurred
R times, where R is a further parameter. If any nontrivial adjustments are made,
iterations are continued. Typically, R = 1 would be sensible for apparent optimality,
since in most practical cases the optimality test is satisfied (again) immediately after
the reset. The final solution is then "conventional" in the sense that no nonbasic
variables lie outside a bound. In badly conditioned cases, an arbitrary number of
iterations may be needed to regain feasibility and optimality following a reset, and
R = 2 may be preferable, since the second reset will normally adjust fewer nonbasics
and there is still a chance of terminating at a "conventional" solution.

Note that the solution obtained after k iterations in a cycle, or k iterations after
a reset, is feasible to within bk (assuming Phase 1 has terminated). We may regard
all preceding iterations as a means of reaching such a point, and it is irrelevant that
the feasibility tolerance has been adjusted during the process. Since 5k _< b, it should
be acceptable to terminate at such a point if the optimality test is satisfied. We
can therefore advocate using R = 0 if there is concern over the arbitrary number of
iterations that may be required following a reset. In other words, though we must
reset every K iterations, there is no real need to reset once the optimality criteria
are satisfied. The solution will satisfy the constraints of problem (3) with feasibility
tolerance equal to the current bk.

A similar situation exists in the degeneracy-resolving procedure of Benichou
et al. [BGHR77, pp. 292-2941, in which a perturbation of order 6 (b = 10- 2 or
10- 3 ) is added to the right-hand side vector b. Once the perturbed problem has
been solved, the perturbation is removed and the dual simplex algorithm is applied
(often requiring no furtuer iterations). If 6 were reasonably small (say 6 = 10-6), one
could argue that the solution to the perturbed problem be accepted for all practical
purposes.

4.5. Convergence

In ou. , ase, the only question of non-convergence arises with resetting every K
iterations. If K were small, the potential loss of ground after each reset could
conceivably lead to a classical cycle of period K. Our choice of K = 10000 is
intended to make the probability of such a cycle negligible.
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To emphasize the point, we note that previous implementations of the sim-
plex method have been operating (in effect) with K set to the basis factorization
frequency-typically 50 or less. Failures due to cycling have been rare (though
not completely absent; for example, see Benichou et al. [BGHR77, pp. 292-294]).
Various other implementation details were probably contributing factors.

To a large extent, the chance of failure due to resetting depends on cond(B),
the condition number of a typical basis matrix. If cond(B) approaches 1/f ; 1016

where e is the machine precision, then any algorithm is likely to fail. However, there
should be no risk of failure when cond(B) approaches 1/6 - 106. By -choosing K
large and retaining the values of slightly infeasible nonbasic variables across basis
factorizations, we essentially remove all risk.

5. A Simplified Procedure

A preliminary implementation of the EXPAND procedure was used for the experi-
ments conducted by Lustig [Lus87]. This version was simpler and potentially more
efficient on nondegenerate problems; we therefore describe it briefly. As before, we
assume that the feasibility tolerance has just been increased to 6 = 6 + r.

Simplified EXPAND procedure:

1. (First pass) Obtain (a1,rl) = ratio-test(x,p,tu).

2. Define a "smallest allowable step" am,, = r/ipl I.

3. If al > amin, set (a,r) = (al,r.) and exit.

4. (Second pass) Otherwise, set (a, r)= ratio-test(x, p,I - 6e, u + 6e).

Ironically, this approach reverses the two passes in the Harris procedure. It
has the advantage of terminating frequently after the first pass (which is just the
classical ratio test applied to the true problem data). The blocking variable reaches
its bound exactly.

If a second pass is required, the blocking variable must be made nonbasic at a
slightly infeasible value (1 - 6 or u, + i).

A possible disadvantage is that the pivot element Jp j is not maximized within
a set of candidates. Nevertheless, the final step satisfies a > r/1p,1 whether one or
two passes are required. This tends to prevent selection of a small pivot element,
unless the feasible region is unbounded. We do not expect numerical instability if 6
and r have the recommended values (Section 4.2). No difficulties were encountered
in the computational tests.

5.1. The effect of ignoring small elements of p

A crucial requirement of the EXPAND procedures is that all components of x be
at least a distance r inside the current perturbed bounds (I - 6, u + 6). If small
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elements of p are ignored during the computation of a (Section 3.1), there is a slight
risk that the required property will not hold for the next iteration.

The risk exists if alpjl > -r for any ignored elements pj; i.e., if a > r/tolp.
For typical parameter values, this means if a > 5. In such cases, once x has been
updated to x + ap, a suitable precaution would be to test if any components lie
outside the bounds (1 - , u + 5). Any that do could be moved onto those bounds.

To date we have not included such a precaution in our implementations. It
would be more strongly recommended if the parameters e, 6 and r were substantially
different from those assumed here.

An alternative is to ignore fewer elements of p (by reducing tolp), since when
-r > c there is essentially no danger of a small pivot being selected even if tolp = 0.
However, it is common for many elements of p to be very small, and excluding such
elements from the ratio test can give significant savings on large problems.

6. Relationship to Wolfe's Procedure

The EXPAND procedure, simplified or otherwise, may be interpreted as a modifi-
cation of Wolfe's anti-cycling procedure [Wo1631, as we will now show. We discuss
the case with general lower bounds on x (but no upper bounds).

6.1. Wolfe's procedure

Let LP0 denote the problem to be solved:

LP0  minimize CTx

subject to Ax = b, x > 1.

Wolfe's "ad hoc" procedure takes effect when the simplex method encounters a
degenerate feasible vertex (say x = xo). The degeneracy structure of xo is used to
define the following subsidiary linear program:

LPI minimize cTx

subject to Ax = b, xD _ ID - d, XN IN,

where d is a positive vector, D denotes basic variables that are currently on a bound,

and N denotes variables that are currently nonbasic. (Problem LP1 is the same
as LP0 except for the bounds on the basic v'ariables. For degenerate variables
the bounds have been relaxed, and for the other basic variables they have been
removed.)'

Clearly, xO is a non-degenerate feasible point for the new problem. When the
simplex method is applied to LPI, the values obtained for x are not directly relevant
to LP 0 , but the bases generated (and the associated dual variables) have meaning
for both problems. Three situations may arise:

sWoffe's procedure can be described using alterations to x and b as well as I, but the concepts
are the same.

7 V ~ V !
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1. A finite optimum is obtained for LPI. The basis and dual variables are also 0

optimal for LPo, and the required solution is x = xo. The procedure may
be terminated after x and its bounds are restored to their original values (xo
and 1).

2. LP 1 is found to be unbounded when a certain nonbasic variable is considered
for entry into the basis. The same basis and nonbasic variable will produce a
feasible descent direction for LP 0 . (This is the direction of recession described
by Osborne [Osb85].) The variables and bounds are again restored to their
original values, and iterations continue on the original problem.

3. A degenerate vertex arises (say x = x1 ). We may again invoke the procedure 0

of defining a subsidiary LP. Since the variable that just entered the basis must
have moved away from its bound in order to cause the degeneracy, the degree
of degeneracy must be less than before. The procedure can be invoked again,
using x, to define a new subsidiary problem LP 2.

In general, the procedure may be applied recursively. Starting with k = 0,
problem LPk reaches case 1, 2 or 3 in a finite number of iterations (since the objective
function for LPk is monotonically decreasing). Case 3 leads to a new problem
LPk+1 but can occur only a finite number of times (since the degree of degeneracy
is monotonically decreasing).

6.2. Discussion

Wolfe's procedure is appealing for at least two reasons: it uses the simplex method
itself to resolve degeneracy, and it can be implemented with a minimum of overhead
(at least for the case I = 0, u = oo), as shown by Ryan and Osborne [R086.

Although a degenerate vertex is unlikely to be encountered in LPk (k > 0),
particularly if d is defined using random positive numbers, it remains necessary to
cope with the possibility. This may be an inconvenience.

Another drawback is the need to decide that degeneracy is present and the
need to define the precise set of degenerate constraints. Suppose we have a set of
basic variables that are not quite on their bounds. This could include all the basic
variables. If we do not include some of them in the definition of XD, it is probable
that only a very short step will be taken after the degeneracy has been "resolved",
and we may need to invoke the procedure again.

6.3. A modification

Suppose we introduce a parameter 6 into the Wolfe procedure, so that instead of
XD > - d we now have xV 2!l - 6d, where 6 > 0. We shall regard d as fixed, butb
remains to be specified.

Note that if there is a unique choice of blocking variable when 6 = 1, the same
blocking variable will be chosen for any positive value of 6. Even if the choice is
not unique, providing we use a consistent criterion for choosing among the set of
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blocking variables, the choice will still be independent of 6. (Either of the EXPAND
procedures would be suitable for making the choice.)

We may extend the argument to show that the sequence of bases generated when
solving LP, is independent of 6.

The significance of this observation is that 6 may be chosen extremely small
(assuming ldil is of order 1). But then, if 6 is sufficiently small there is no need to
define LP 1 ; we can simply solve the original problem with a tiny modification to
some of the bounds.

We emphasize that solving LPo with the modified bounds generates the same
bases as solving LP 1, and if no further degenerate vertices are encountered, we either
determine a feasible descent direction or confirm that x is the required solution.

6.4. A further modification

As in the original Wolfe procedure, the difficulty is that we cannot guarantee that
a further degenerate vertex will not occur. We now show how to avoid such an
eventuality by judicious choice of d. First note, however, that choosing the elements
of d at random is not a good strategy from the perspective of preserving well-
conditioned bases. Indeed, the best choice is d = e, the vector of ones (assuming
the problem is well scaled). In this case, the blocking variable corresponds to the
largest eligible pivot element in the search direction p.

Such a structured choice for d would seem to increase the probability of a degen-
erate vertex arising. Observe, however, that once the best possible choice of blocking
variable has been defined (say x,), only d, need be defined. We are then free to
increase di, i 5 r, since had this been our initial choice of d, the blocking variable
would remain the same. Suppose we increase all elements di (i 0 r) by r, where r
is of order one. Such a choice prevents the current vertex from being degenerate in
LP 1 . Also, in the following iteration the value of the step to the blocking variable is
relatively large (of order r), and hence again results in a good choice for the blocking
variable as regards the condition of the basis.

The second iteration fixes dr,, say, but we are still free to alter di, i $ r, r'.
By proceeding in this manner we can prevent the occurrence of degenerate vertices.
Note that although d, has been fixed, if xr ever becomes basic again, we are able to
redefine its bound. This may appear to negate the argument that it would still be
the first blocking variable. However, provided all di are being increased similarly,
there is no contradiction.

With 6 small and d = be used to modify all bounds (not just those of XD), the
approach just described is equivalent to the EXPAND procedure.

Note that a strict implementation of Wolfe's procedure would preserve x0 and
eventually determine a feasible descent direction p. In the modified procedure, we
take a sequence of steps (to i say) before p is determined. We then step along p
from i rather than zo. However, if 6 is sufficiently small, lix0 - ill is negligible and
the infeasibility incurred (with respect to x > 1) is strictly bounded.

,r " "'" 5 . .. ... " '-' TrL ' ~ " A " > " " " '"
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6.5. Summary

We have shown that the EXPAND procedure is closely related to Wolfe's method.
Some advantages are as follows:

" There is no need to judge whether or not degeneracy is present, or to specify
a set of degenerate variables. -

" There is no storage overhead or logical overhead. General bounds on x can be
handled without complication.

" There is no numerical or logical information to be preserved across basis fac-
torizations (other than x and the current b).

" All iterations are "equal", in the sense that there is exactly one steplength
determination per iteration. (In Wolfe's method, if LPk is found to be degen-
erate, the steplength procedure is effectively repeated at the beginning and
end of LPk+l.)

7. Issues Arising in Phase 1

Broadly speaking, Phase 1 of the simplex method is implemented by applying a
normal (Phase 2) procedure to a modified problem, whose bounds have been altered
to make the current solution feasible.

First we need to summarize the main aspects of Phase 1. (See also Orchard-Hays
[Orc68] and Beale [Bea70].) Some finer points can then be discussed.

7.1. The Phase-1 bounds and objective

Suppose a variable xi has true bounds (1j, uj). If xj lies above its upper bound by
more than the current feasibility tolerance (xj - uj > bk), its bounds are treated as
(lj, co). Similarly, if its lower bound is not satisfied (li - x3 > bk), the bounds are
taken to be (-oo, ui). Otherwise, the true bounds on xj are retained.

The Phase-1 objective function Lix is then defined as j = 1, -1 and 0 re-
spectively. Note that j is redefined every Phase-1 iteration. It is used to compute 0
reduced costs and hence a search direction p in the normal way.

For most Phase-1 iterations, an appropriate step along p can be defined as usual
by applying the EXPAND procedure to the data (x,p,, fi), where i and fi are the
modified bounds. We define this step to be aF, since it keeps variables feasible with
respect to any bounds that they currently satisfy. _

For some iterations, a special step al must be taken; see Section 7.3. (This step
allows one or more infeasible variables to become feasible.)

Thus, Phase 1 is essentially the same as Phase 2 except that j, i and fi are
redefined every iteration, and two possible steps are computed rather than one.
(The step ultimately taken is a = aF or al, subject to safeguards discussed below.)

To see that progress is guaranteed, observe that the Phase-1 objective decreases
as a increases from zero. If any infeasible variables become feasible as a continues
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to increase, the sum of infeasibilities will decrease at a lower rate (and could even
start to increase), but the number of infeasibilities will be lower. Convergence is
therefore assured.

(A more intricate steplength procedure can be designed to minimize the piece-
wise linear function JT(x + ap), where j is regarded as a function of a; for example,
see Greenberg [Gre78], Fourer [Fou85]. However, we adopt the simpler approach as
it is effective in practice. Both approaches have the desirable property that many
infeasibilities can be removed in one iteration.)

7.2. Advantages of increasing bk

Note that the EXPAND procedure does allow a to increase from zero. Also, if the
final steplength leaves the number of infeasibilities unaltered, the sum of infeasi-
bilities at the start of the next Phase-1 iteration will be lower simply because the
tolerance used to measure infeasibility has increased (from 65k to 6k + T). Thus for
two separate reasons, either the sum or the number of infeasibilities will decrease
after each Phase-1 iteration.

Although r is typically very small, it is intended to be significantly larger than
machine precision E, and preferably larger than the cut-off vaue toip (Section 3.1).
An important benefit is that it helps mask the rounding error that is inevitably
present when x is updated to x + (vp. The set of infeasible variables (as measured by
blk) is therefore guaranteed to stay the same or to diminish. 6 We believe that many
"infinite loop" failures of simplex implementations have been due to an inadvertent
oscillation in the number of infeasibilities when J is redefined each Phase-1 iteration
with a constant bk. (An example is described by Ogryczak [Ogr87]. Similar examples
were encountered with MINOS prior to the present implementation.)

If a problem is still infeasible after K iterations, the feasibility tolerance is re-
duced from '5K to bo for the next cycle of iterations. An apparent disadvantage is that
the number of infeasibilities may increase by some arbitrary number (say q), and the
sum could increase by as much as qbK. However, this is normally inconsequential
even if q is nearly as large as m. (Here it is important that many infeasibilities can
be removed in one Phase-1 iteration.) Similar comments apply when the resetting
procedure is invoked at an apparently optimal solution.

7.3. The special Phase-1 step

By construction, the Phase-I objective causes at least some of the infeasible variables
to move towards the feasible region. Let dj denote the step that allows such a
variable to reach its nearest bound exactly (and hence become feasible):

(13 - X,)/p p > 0,

3 = (uj - z3 )/p j  pj < 0,
0o otherwise

6Fletcher's method for resolving degeneracy also possesses favorable prop :t 'he pr--. r-e"
of rounding error; see [Fle85,Fle87].
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(cf. (6)). The special Phase-1 step referred to above is then al = dj for some index 0
j e I (where I temporarily denotes the set of infeasible variables).

In general it would be sensible to define

a[ = as = max a, a = min{al,aF}, (12)

since if any infeasible variables become feasible as the steplength increases, aj marks
the point at which the maximum number become feasible. (Note that a should not
exceed aj because some of the infeasible variables could become more infeasible as
a increases. Also note that aF could be infinite.)

If al = d., a danger is that the corresponding pivot element p, could be arbi-
trarily small.

Following the philosophy of Harris (Section 3.2), some freedom to maximize the
pivot element can be obtained by using a two-pass procedure. The perturbed bounds
I - 6e and u + 6e are used in the first pass as usual, but this gives a step &1 that
is slightly too small. The second pass then considers all unperturbed steps dj no r
smaller than &1:

1p, I = maxlpjl such that 6j >_ al. J

This was the method used in Lustig's experiments [Lus87] and in all preceding
versions of MINOS. It appears to have performed reliably for many years.

Nevertheless it is evident that (p.1 could still be as small as the cut-off value tolp.
We have therefore adopted the following safer stategy. In the first pass, we find the
largest relevant pivot element:

€ =max IPjI. (13)
j~l

In the second pass we then find the largest step subject to the pivot element being
reasonably close to 0:

al = 6. = max di such that IP! 7€ (14)
jEl

for some constant 7, where 0 < 7 < 1. Experience suggests that the step al should
be taken whenever possible (to remove the associated infeasible variable from the
basis). We therefore define

a = OF otherwise, (15)

where a] (from the first pass of the Harris procedure) is slightly larger than aF.
Together, (13)-(15) define the steplength in place of (12). By observation on 53 test
problems, the values 7y = 0.1 and -f = 0.01 seem to impede Phase 1 relative to the
unsafeguarded -y = 0. We have therefore settled on -f = 0.001.

A final comment: computation of the special step al does not depend criti- 0
cally on the feasibility tolerance, and is therefore compatible with the EXPAND
procedure.
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8. Nonlinear Programs with Linear Constraints

Here we assum,; that the problem to be solved is the same as in (1), except that the
objective function cTz is replaced by a smooth general function F(x). The problem
could therefore be a quadratic program (QP) or a more general linearly constrained
(LC) optimization problem.

The environment we have in mind is active-set methods for QP and LC prob-

lems (Fletcher [Fle8l]; Gill, Murray and Wright [GMW81]). 7 It has been observed
by Osborne [Osb851 that Wolfe's anti-cycling procedure generalizes to certain LC
algorithms, including the reduced-gradient method of Wolfe [Wo162]. The same is
true of the present approach. The following preliminary implementation has been
developed for the reduced-gradient algorithm in MINOS.

8.1. A normal iteration

Concepuaaiy, the EXPAND procedure may be applied directly. Thus, at each it-
eration we increase the feasibility tolerance slightly, and after obtaining a search
direction p, we compute a positive step and a blocking index (a, r) as before. Wc
rename this step am,,. since it may be preferable to take a shorter step. Any step
in the interval (0, a.] will give a point that is acceptably feasible.

In general, we then perform a linesearch to find a step 6 that approximately
minimizes the objective function over the specified interval:

C i argmin F(x + ap), a E (0,a,.].

Note that

anwx = max{amin,a2},

where a2 is the step that allows the blocking variable to reach its true bound (see

Figure 2). In case 1 of Figure 2, the search would be performed over the "large"
interval (0, a2], while for cases 2 and 3 it would be performed over (0, 0mn].

If the linesearch is successful (the objective function is "sufficiently reduced"),
there is no danger of cycling and the optimization algorithm proceeds normally. The
current point is updated (z -- z + 6p), and if the maximum step was chosen, the
blocking constraint is added to the working set (i.e., xr becomes nonbasic).

8.2. Avoiding the linesearch

In practice, it may be inefficient or unwise to attempt a linesearch, since am. could
be very small if degeneracy is present. Even if the linesearch returns the maximum
step 6 = ctm,, the improvement in objective value may be very slight. More
seriously, the "noise level" in F(z + ap) over the interval (0, am.] may be too great
to allow identification of an improved point, and the linesearch will be obliged to
"fail".

?The EXPAND procedure has been implemented in the 1988 versions of QPSOL and LSSOL.
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We therefore make use of the step a2 that allows the blocking variable to reach 0
its bound exactly. In Figure 2, this step is positive for the first two cases, but
negative for the third (and therefore not shown).

In cases 1 and 2 (a2 > 0) we always perform the linesearch.
In case 3 (a2 < 0), degeneracy is present and we usually take a zero step. (We

skip the linesearch and make the blocking variable nonbasic.)
The only exception is when case 3 would create a vertex of the feasible region;

this is the most likely circumstance under which a zero step could lead to cycling.
If a2 < 0 and the working set has only one degree of freedom, we attempt to find a
positive step by performing a linesearch over the interval (0, ami.

8.3. Recovery from a linesearch failure

If the linesearch ever fails to find an improved point, we try to determine whether
the failure was due to the search interval being too sma!!.

If a2 < am,, (cases 2 and 3), we force a step to the true bound (a = a2) and
update the working set.

Otherwise, we assume that a better search direction is required. We leave the
working set unaltered and invoke a series of recovery procedures. (In MINOS, these
include re-estimating any unknown components of the objective gradient using cen-
tral differences, resetting the approximate reduced Hessian, deleting a constraint
from the working set, and refactorizing the basis.)

8.4. Nonlinear constraints

Nonlinear programs involving nonlinear constraints are often treated by SQP and
SLC methods, involving a sequence of linearly constrained subproblems to which
the above anti-degeneracy procedures may be applied.

It is clearly necessary that cycling be avoided within the LC subproblems.
Whether this is sufficient to prevent the overall NLC algorithm from cycling re-
mains to be investigated.

0% .1
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9. Computational Results

In this section we compare three steplength procedures for the simplex method. For
convenience we give them the following names:

SPI: The "textbook" ratio test of Section 3.1.

SP2: The simplified EXPAND procedure of Section 5.

SP3: The maximum-pivot EXPAND procedure of Section 4. (This includes Harris-
type tie-breaking and is the preferred method of this paper.)

SP3 has been implemented in GAMS/MINOS (see [BKM88]) and in MINOS 5.3
(May 1988). All three procedures have been implemented in MINOS 5.3 and tested
on the first 53 linear programs in the netlib collection [Gay85]. The problems were
ordered according to the number of nonzero elements as in [Lus87]. The main run-
time options specified were

PRINT LEVEL 0
CRASH OPTION 1
CRASH TOLERANCE 0.1

SCALE OPTION 2
PARTIAL PRICE 10

EXPAND FREQUENCY 10000

FEASIBILITY TOLERANCE 1. OE-6

(the default options for linear problems in MINOS 5.3). The last two options define

K = 10000 and 6 = 10- 6 for the EXPAND procedures. The limit on calls to the
resetting procedure at an apparent optimum was set to R = 2 (Section 4.4).

The CRASH parameters cause MINOS to choose an approximately triangular basis
from the columns of A = ( A I). In most cases the scaling option has the effect of
making I i*11 = 0(1), where i* is the scaled optimal solution.s This helps justify
6 = 10-6 as a feasibility tolerance for the scaled problem.

Tables 1, 2 and 3 give results for the simplex method using SP1, SP2 and SP3
respectively. The "objective function" values indicate that the final objective was
accurate to four or more digits (except for one problem that terminated early). The W.
meaning of "degenerate steps" depends on the method; see below. Solution times are
given in CPU seconds; they do not include time for data input or solution output.'

Figure 4 -lots the "total iterations" in Tables 1 and 2 relative to the iterations
in Table 3. Figure 5 compares CPU times similarly.

a Exceptions were problems GROW7, GROW 15 and GROW22, for which Ili* II = o(107), II = --
0(106).

9Tests were run as batch jobs on a DEC VAXstation II. The operating system was VAX/VMS
version 4.5. The compiler was VAX FORTRAN version 4.6 with default options, including code
optimization and D-floating arithmetic (relative precision c - 2.8 x 10-'7). The memory available
kept paging to a minimum.

- -I Sp - - S S - *
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9.1. The textbook ratio test

SP1 was safeguarded by treating pj as zero in equation (6), using tolp 2/ 3 . Since
rounding error can cause the steplength to be negative, a further precaution was to
set a = 0 if the ratio test gave a < 10-16. ("Degenerate steps" counts the number
of times this occurred.) Following conventional practice, blocking variables were set
exactly on their bounds when they became nonbasic.

Although it would be reasonably easy to break (near) ties in favor of large IpjJ,
we chose not to tamper further with the classical procedure; methodical tie-breaking
is the province of the Harris and EXPAND procedures.

In the test runs, small pivots slipped through the c2/ 3 sieve several times on each
of five problems (SCTAP2, SCTAP3, SCSD8, PILOTJA and PILOT). In general, these
are detected as near-singularities when the LU factors of the basis are updated.
Refactorization is invoked and some variable xj is replaced by an appropriate slack
variable. Since xj retains its value when rejected from the basis, iterations continue
without apparent interruption.

Only one rcal failure was encountered: problem SCSD8 was terminated at itera-
tion 5804 after stalling for the final 1000 iterations (far short of optimality). There
was no obvious cycle in progress, but small pivots were encountered frequently dur-
ing the run, causing the basis to be ill-conditioned for many groups of iterations.
Empirically, ill-conditioning can only aggravate stalling (particularly for a method
that has no guarantee of terminating).

Figure 4 illustrates that on most problems, SPI led to more simplex iterations
than SP2 or SP3.

9.2. The simplified EXPAND procedure

In Table 2, "degenerate steps" means the number of times SP2 required two passes
to determine a blocking variable.

No singularities were encountered during the tests, and all problems terminated
successfully. The resetting procedure was invoked at 10000 iterations for the last
two problems, with 372 and 423 nonbasic variables (respectively) being moved a
distance in the range (0., 6 .) onto their bounds.

With 6 as small as 10', resets do not disturb x greatly. After resetting at an ap-
parent optimum, most problems were confirmed optimal with no further iterations.
On PILOT4, GANGES, PILOTJA and PILOT, 35, 190, 98 and 28 nonbasic variables
were moved onto their bound and 4, 1, 1 and 15 additional iterations were needed
to confirm optimality. In the case of GANGES, a second reset moved one nonbasic
variable but led to no further iterations.

9.3. The EXPAND procedure

In Table 3, "degenerate steps" means the number of times a was forced to be as
large as omin . This is the number of times a blocking variable was made nonbasic
at an infeasible value, rather than reaching its bound exactly.

F I
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To date, there has been no specific study of the effect of maximizing the pivot
element within a steplength procedure--the Harris approach to tie-breaking. Folk-
lore has it that "stability is improved and the number of simplex iterations is often
reduced". However, such a statement is not especially meaningful without a precise
definition of the procedures being compared.

Here, it is meaningful to compare both versions of the EXPAND procedure be-
cause it is understood that in each case the surrounding simplex algorithm increases
the feasibility tolerance every iteration and deals correctly with infeasible blocking
variables (by retaining their numerical values when they become nonbasic).

The results in Tables 2 and 3 essentially confirm the folklore. Figure 4 illustrates
the trend more clearly: the ratio of SP2 to SP3 iterations is mostly greater than
one. In Figure 5, the CPU-time ratios are shifted slightly downwards, reflecting the
fact that SP2 usually requires only one pass, whereas SP3 always requires two.

Only two problems required additional iterations after resetting. On PILOTJA,
81 nonbasics were moved onto their bound at iteration 6070, and 63 iterations later
a second reset moved 7 nonbasics. Termination occurred 8 iterations later (with no
attempt to reset).

On PILOT, 127 nonbasics were moved onto their bounds at iteration 10000,
and 43 at iteration 17698. Termination occurred after a further 18 iterations. As
expected, the effect of resets was slightly less noticeable than with SP2.

9.4. Other parameter values

The 53 test problems have been solved many times, with and without scaling and
partial pricing. One of the main parameters of interest is the feasibility tolerance.
We have experimented with the values 6 -= 10 - 4 , 10- 5, 10- 6 and 10 - 7 (Harris
recommended 6 = 5 x 10-'), but the sensitivity of the simplex method to minor
algorithmic changes seems to have masked any useful trend. Significant improve-
ments were certainly observed on some of the problems with 6 = 10- 4 . The risk is S

a greater disturbance aftr resetting on problems that are somewhat ill-conditioned

(notably PILOTJA and PILOT).
As a further test, we disabled the "expand" feature of SP3 by specifying K = oo,

r = 0. This has the effect of fixing the feasibility tolerance at 60 = 0.5 x 10-6 , and
most closely resembles the harris-type tie-breaking (without losing the feature of
making infeasible blocking variables nonbasic at their correct value). No failures
occurred on four runs with and without scaling and partial pricing, confirming that
the probability of failure with the Ilarris procedure is indeed low, given the second .

safeguard. The iteration counts were much the same as when 6 was allowed to
expand.

Note that once the second safeguard is implemented, the assurance gained by
allowing 6 to expand comes at no cost. iheit! is no reason to keep 6 fixed.

NAI
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Problem Objective Total Degen Percent Solve tine

function itna steps degen VAX II secs

1 AFIRO -4.6475314285714E+02 6 3 50.00 0.45

2 ADLITTLE 2.2549496316238E+05 113 20 27.70 5.90

3 SC205 -5.2202061211707E+01 118 14 11.86 13.03

4 SCAGR7 -2.3313897523795E+06 86 10 11.63 6.80

6 SHARE2B -4.1673224074142E+02 124 48 38.7; 8.31

6 RECIPE -2.6661600000000E+02 33 3 9.09 2.12

7 VTPBASE 1.2983146246136E+05 64 30 46.88 6.39

8 SHARE1B -7.6589318579186E+04 277 4 1.44 24.68

9 BORE3D 1.3730803942085E+03 207 155 74.88 28.25

10 SCORPION 1.8781248227381E+03 109 41 37.61 21.23
11 CAPRI 2.6900129137682E+03 246 50 20.33 32.86
12 SCAGR25 -1.4753433060769E+07 376 79 21.01 89.30
13 SCTAP1 1.4122500000000E+03 259 123 47.49 38.68

14 BRANDY 1.5185098964881E+03 331 74 22.36 53.65

15 ISRAEL -8.9664482186305E+05 266 20 7.52 35.55

16 ETA ACRO -7.5571521755166E+02 470 134 28.51 93.29
17 SCFXN1 1.8416759028349E+04 378 86 22.75 69.71

18 GROW7 -4.7787811814712E+07 179 65 36.31 37.90
19 BANDN -1.5862801845012E+02 483 80 16.56 100.91

20 E226 -1.8751929066371E+01 580 202 34.83 85.34
21 STANDATA 1.2576995000000E+03 145 109 75.17 23.71

22 SCSDI 8.6666666743334E+00 1084 1000 92.25 89.14
23 GFRDPNC 6.9022359995488E+06 672 350 52.08 187.48
24 BEACONMD 3.3592485807200E+04 116 27 23.28 13.90

25 STAIR -2.512669b119296E+02 469 63 13.43 231.65
26 SCRS8 9.0429998618888E+02 537 183 34.08 143.88
27 SEBA 1.5711600000000E+04 445 54 12.13 106.98
28 SHELL 1.2088253460000E+09 303 73 24.09 76.90
29 PILOT4 -2.5811392588836E+03 1613 229 14.20 706.74
30 SCFXPI2 3.6660261564999E+04 917 201 21.92 326.56

31 SCSD6 5.0500000078262E+01 1476 1137 77.03 214.56

32 GROWLS -1.0687094129358E+08 397 148 37.28 150.31
33 SHIP04S 1.7987147004454E+06 152 34 22.37 36.23

34 FFFFF800 5.5567959102690E+05 938 388 41.36 287.07
35 GANGES -1.0958596920679E+05 687 214 31.15 358.13
36 SCFXM3 5.4901254549751E+04 1359 303 22.30 724.11
37 SCTAP2 1.7248071428571E+03 785 530 67.52 453.01
38 GROW22 -1.6083433648256E+08 635 254 40.00 371.58
39 SHIPO4L 1.7933245379704E+06 266 55 20.68 65.46
40 PILOTWE -2.7200970057530E+06 5003 838 16.75 3540.04
41 SIERRA 1.5394460531792E+07 1340 825 61.57 704.48
42 SHIP08S 1.9200982105346E+06 242 64 26.45 102.41
43 SCTAP3 1.4240000000000E+03 1151 876 76.11 837.87

44 SHIP12S 1.4892361344061E+06 434 111 25.58 253.79
45 25FV47 5.5018458882865E+03 8687 1100 12.66 5794.72
46 SCSD8 1.318E+03 Stalled 5804 3566 61.44 2787.51
47 NESM 1.4076079386175E+07 3067 0 0.00 1338.22

48 CZPROB 2.1851966988566E+06 1519 151 9.94 788.61 .%

49 PILOTJA -6.1130625520046E+03 7086 504 7.11 6317.42
50 SHIPO8L 1.9090552113891E+06 522 149 28.54 250.04
51 SHIP12L 1.4701879193293E+06 877 252 28.73 594.19
52 80BAU3B 9.8723001910483E+05 10896 1483 13.61 12674.42
53 PILOT -5.5740380062649E+02 20720 1630 7.87 81173.13

Table 1: Results from MINOS 5.3 using textbook ratio test
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Problem Objective Total Degen Percent Solve time
function itna steps degen VAX II secs

I AFIRO -4.6475314285714E+02 6 3 50.00 0.47
2 ADLITTLE 2.2549496316238E+05 92 12 13.04 4.75

3 SC205 -5.2202061211707E+01 123 13 10.57 14.23
4 SCAGR7 -2.3313897523795E+06 86 10 11.63 6.73

5 SHARE2B -4.1573224074142E+02 113 17 15.04 7.69
6 RECIPE -2.6661600000000E+02 33 3 9.09 1.91
7 VTPBASE 1.2983146246136E+05 71 24 33.80 6.97

8 SHAREIB -7.6589318579186E+04 242 3 1.24 21.56
9 BORE3D 1.3730803942085E+03 165 80 48.48 23.41

10 SCORPION 1.8781248227381E+03 105 41 39.05 20.10

11 CAPRI 2.6900129137682E+03 245 22 8.98 33.21
12 SCAGR25 -1.4753433060769E+07 361 68 18.84 87.47

13 SCTAPI 1.4122500000000E+03 291 70 24.05 42.55
14 BRANDY 1.5185098964881E+03 462 35 7.58 75.15

15 ISRAEL -8.9664482186305E+05 225 29 12.89 30.13

16 ETAMACRO -7.5571521718413E+02 570 135 23.68 119.26
17 SCFXM1 1.8416759028349E+04 396 61 15.40 72.28
18 GROW7 -4.7787811814712E+07 174 18 10.34 40.82

19 BANDM -1.5862801845012E+02 456 25 5.48 98.82
20 E226 -1.8751929066371E+01 494 108 21.86 74.55
21 STANDATA 1.2576995000000E+03 106 46 43.40 18.80
22 SCSD1 8.6666666743334E+00 508 321 63.19 46.96

23 GFRDPNC 6.9022359995488E+06 687 280 40.76 193.26
24 BEACONFD 3.3592485807200E+04 116 21 18.10 13.60
25 STAIR -2.5126695119296E+02 415 42 10.12 202.79

26 SCRS8 9.0429998618888E+02 609 171 28.08 167.78 Wh.

27 SEBA 1.5711600000000E+04 463 52 11.23 118.27
28 SHELL 1.2088253460000E+09 304 54 17.76 77.81

29 PILOT4 -2.5811392616949E+03 1870 182 9.73 827.58 .

30 SCFXM2 3.6660261564999E+04 858 130 15.15 298.76
31 SCSD6 5.0500000078262E+01 1425 586 41.12 215.19

32 GROW15 -1.0687094129358E+08 435 50 11.49 179.69
33 SHIP04S 1.7987147004454E+06 151 27 17.88 36.40

34 FFFFF800 5.5567958085232E+05 1073 353 32.90 341.59
35 GANGES -1.0958598988428E+05 703 234 33.29 384.19

36 SCFXM3 5.4901254549751E+04 1318 188 14.26 692.73
37 SCTAP2 1.7248071428571E+03 750 392 52.27 376.31 S
38 GROW22 -1.6083433648256E+08 638 72 11.29 397.37

39 SHIPO4L 1.7933245379704E+06 277 47 16.97 67.91
40 PILOTWE -2.7201032443839E+06 4982 572 11.48 3520.13

41 SIERRA 1.5394390923795E+07 1317 542 41.15 701.36

42 SHIP08S 1.9200982105346E+06 269 61 22.68 117.89
43 SCTAP3 1.4240000000000E+03 1096 624 56.93 736.06

44 SHIPI2S 1.4892361344061E+06 431 75 17.40 259.39
45 25FV47 5.5018458882864E+03 7514 440 5.86 5058.45
46 SCSD8 9.049999992546E+02 4281 1693 39.55 1722.09

47 NESM 1.4076079386175E+07 3067 0 0.00 1338.27

48 CZPROB 2.1851966988566E+06 1497 62 4.14 839.22

49 PILOTJA -6.11305405606275+03 7398 547 7.39 6466.02
50 SHI?08L 1.9090552113891.+06 463 69 14.90 236.16

51 SHIP12L 1.4701879193293E+06 852 164 19.25 589.06
52 80BAU3B 9.8722736149636E+05 10769 921 8.55 12652.68

53 PILOT -5.5746058728842E+02 18441 4005 21.72 75072.32

Table 2: Results from MINOS 5.3 using simplified EXPAND procedure
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Problem Objective Total Degen Percent Solve time
function itna steps degen VAX II secs

1 AFIRO -4.6475314285714E+02 6 3 50.00 0.49
2 ADLITTLE 2.2549496316238E+05 92 14 1S.22 5.07
3 SC205 -5.2202061211707E+01 117 13 11.11 15.14
4 SCAGR7 -2.3313897523795E+06 86 10 11.63 7.32

S SHARE2B -4.1573224074142E+02 104 33 31.73 7.80

6 RECIPE -2.6661600000000E+02 33 3 9.09 2.20
7 VTPBASE 1.2983146246136E+05 59 17 28.81 6.72
8 SHAREIB -7.6589318579186E+04 269 3 1.12 26.28

9 BORE3D 1.3730803942085E+03 159 62 38.99 23.82
10 SCORPION 1.8781248227381E+03 103 38 36.89 19.87

11 CAPRI 2.6900129137682E+03 228 33 14.47 32.19

12 SCAGR25 -1.4753433060769E+07 361 74 20.50 91.79

13 SCTAP1 1.4122500000000E+03 242 65 26.86 37.33
14 BRANDY 1.5185098964881E+03 462 57 12.34 78.95

15 ISRAEL -8.9664482186305E+05 261 17 6.51 38.20
16 ETAACRO -7.5571522106445E+02 501 115 22.95 106.96
17 SCFXM1 1.8416759028349E+04 386 66 17.10 72.68
18 GROW -4.7787811814712E+07 184 32 17.39 42.67

19 BANDK -1.5862801845012E+02 487 47 9.65 107.71

20 E226 -1.8751929066371E+01 462 102 22.08 72.75

21 STANDATA 1.2576995000000E+03 97 52 53.61 17.47
22 SCSD1 8.6666666743334E+00 427 225 52.69 38.28

23 GFRDPNC 6.9022359995488E+06 717 337 47.00 206.55
24 BEACONFD 3.3592485807200E+04 116 22 18.97 14.10

25 STAIR -2.5126695119296E+02 364 40 10.99 190.08
26 SCRS8 9.0429998618888E+02 625 130 20.80 177.86
27 SEBA 1.5711600000000E+04 417 44 10.55 106.56

28 SHELL 1.2088253460000E+09 310 54 17.42 78.57
29 PILOT4 -2.5811392623740E+03 1452 141 9.71 656.83

30 SCFXK2 3.6660261564999E+04 880 138 15.68 319.19
31 SCSD6 5.0500000078262E+01 1099 503 45.77 164.71

32 GROW1S -1.0687094129358E+08 446 65 14.57 194.65
33 SHIP04S 1.7987147004454E+06 149 25 16.78 35.20
34 FFFFF800 5.5567961145338E+05 866 293 33.83 281.97

35 GANGES -1.0958635746320E+06 679 218 32.11 372.73
36 SCFXI3 5.4901254549751E+04 1184 180 15.20 632.04

37 SCTAP2 1.7248071428571E+03 680 386 56.76 342.76
38 GROW22 -1.6083433648256E+08 643 83 12.91 403.74
39 SHIPO4L 1.7933245379704E+06 266 38 14.29 67.03

40 PILOTWE -2.7201043693969E+06 5267 598 11.35 3850.05
41 SIERRA 1.5394362183632E+07 1266 568 44.87 700.02
42 SHIPO8S 1.9200982105346E+06 254 59 23.23 113.50
43 SCTAP3 1.4240000000000E+03 840 502 59.76 570.60

44 SHIP12S 1.4892361344061E+06 445 87 19.55 274.72
45 25FV47 5.5018467790998E+03 8136 837 10.29 5722.41
46 SCSD8 9.0499999992546E+02 2857 1251 43.79 1174.23
47 NESK 1.4076087003981E+07 2853 34 1.19 1296.87
48 CZPROB 2.1851966988566E+06 1503 130 8.65 836.44
49 PILOTJA -6.1131152948481E+03 6141 422 6.87 5496.13
50 SHIPO8L 1.9090552113891E+06 467 67 14.35 244.25
51 SHIP12L 1.4701879193293E+06 891 222 24.92 621.37
52 8OBAT13B 9.8723197704930E+05 9693 1068 11.02 11768.52

53 PILOT -5.5740387782461E+02 17716 1624 9.17 74443.58

Table 3: Results from MINOS 5.3 using maximum-pivot EXPAND procedure
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Figure 4: Comparison of iterations required by the simplex method with different
steplength procedures. The ratios il/ia (...) and i 2/i 3 (-) are plotted for 53 test
problems, where (ij, i 2 , i 3 ) are the iterations for the (textbook, simplified EXPAND,
maximum-pivot EXPAND) procedures respectively.
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Figure 5: Similar comparison of times required by the simplex method with different
steplength procedures.
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10. Conclusions

The linear program (1) involves general constraints Ax = b and bounds I < x < u.
The simplex method aims to satisfy Ax = b to machine precision, while working
towards a solution that satisfies the bounds to some looser tolerance 6. (The opposite
is true for certain other iterative methods.)

The EXPAND procedure was developed in response to sporadic failures that
occurred during Lustig's experiments with MINOS 5.1 on the same 53 test problems
used here [Lus87]. We have not experienced any failures since.

Perhaps the main advance has been in treating the infeasible blocking variables
generated by a Harris-type ratio test. By retaining the infeasible values when such
variables become nonbasic, we satisfy Ax = b to machine precision throughout. -

Only then can we take correct advantage of satisfying bounds loosely in the manner
pioneered by Harris. An important benefit is that there is virtually no reversion to
Phase 1 after refactorization-a common occurrence previously on ill-conditioned
problems.

The precaution of expanding 6 every iteration provides added theoretical as- 0

surance of convergence (given the consequent similarity to Wolfe's anti-degeneracy
procedure), as well as added practical assurance in the presence of rounding error.
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A new method is given for preventing the simplex method from cycling. Key
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The method may be applied to active-set methods for solving nonlinear
programs with linear constraints.
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